

EISSN 2583-4304

Access this article online



URL:<u>https://www.ijptrs.co</u> m/viewissue/83/Fulltext DOI:https://www.ijptrs.com/p ublic/images/content/382vol2i ssue1manu1%20(Autosaved)% 20(1).pdf

| Yashpal Gohil <sup>1</sup> ,        |
|-------------------------------------|
| Priyanshu V. Rathod <sup>2</sup> ,  |
| PT, PhD                             |
| <sup>1</sup> Post graduate scholar, |
| school of                           |
| physiotherapy, RK                   |
| University                          |
| <sup>2</sup> Director, school of    |
| physiotherapy, Dean                 |
| faculty of medicine, RK             |
| University                          |
| Corresponding Author:               |
| Yashpal Gohil <sup>1</sup> ,        |
| Priyanshu V.                        |
| Rathod <sup>2,</sup> priyanshu.rath |
| od@rku.ac.in,physio.pr              |
| iyanshu@gmail.com                   |
| Submission on :25-01-               |
| 2023                                |
| Revised:31-01- 2023                 |
| Publish:01-02-2023                  |
| ©2023 Association of                |
| Health and Wellness                 |
| Providers                           |

Table of contents: <u>Introduction</u> <u>Materials and</u> <u>methodology</u> <u>Intervention</u> <u>Result:</u> <u>Discussion</u> <u>Conclusion:</u> References "DESIGNING AND TESTING OF SPINAL WELLNESS PROGRAM FOR HEALTHY INDIVIDUAL - AN INTERVENTIONAL STUDY"

Yashpal Gohil<sup>1</sup>, Priyanshu V. Rathod<sup>2</sup> 🔊 😰

## Abstract

**Background**: Human physical structure changes with age along with lifestyle. The changes are constant and irreversible to some extent. The spine is one of the most common structures which changes and leads to changes in other structures. Any kind of adverse changes in spinal structure compromises the proximal stability and mobility which further comprise the distal stability as well as mobility. Certain physical changes like tightness, stiffness, or weakness as well as functional limitations are not recognized until pain and discomfort overcome the ADLs. Spinal wellness should be taken into consideration from early aging with prediction, prevention, and personalization. Thus we would like to develop a comprehensive program for assessing and managing the normality of spinal structure under the spinal wellness program. AIMS: To find out the efficacy of the spinal Program individuals. Wellness on healthy METHODOLOGY:30 subjects were selected based on the physical assessment such as joint Range of Motion (ROMs), Manual Muscle Testing (MMT), the curvature of the spine, and v-sit & reach test and spine functional index under functional assessment. A subject-specific spinal wellness program was given for two weeks to assess the effect. RESULT: All the statistical analysis was done by SPSS 25. An intergroup analysis for comparing the difference between pre and post was done by using an independent sample t-test. In the pre-assessment, we found that normal subjects have a lack of range of motion and strength in the spine. after the program, we saw significant changes in the physical as well as functional outcomes. CONCLUSION: In context to result and discussion spinal wellness programs must be taken into consideration in the early age of life within the lifestyle modification to prevent spinerelated disease and disorders such a comprehensive spinal wellness program can be prescribed to the community for health and wellness.

**KEYWORDS**: Spine Wellness, Stretching, Strengthening, Spine Deformity, Physiotherapy, Rehabilitation

## **INTRODUCTION**

The human body is driven through physical and functional activity. Activity has an impact on lifestyle. Technological advances are increasing the number of three physically inactive lifestyles. Lack of exercise is considered a health risk factor and is often associated with the development of degenerative diseases such as hypertension, obesity, and spinal disease.

The present scenario on lifestyle is persons are doing fewer activities and using more gadgets its call sedentary lifestyle and sedentary lifestyle has an impact on person's postural health of the body and its give impact on the structure of the body like bones and muscles due to faulty adaptation of postures it gives more impact on the spinal health of the human body. The spine is an integral part of human mechanics because it has natural curvature that provides the body stability and mobility. Kyphosis is a condition in which the natural curves of the spine are unnaturally high. it can occur as a result of poor posture, while lordosis might develop as a result of an enlarged lumbar curve. A subject with enhanced lumbar lordosis has weak and stretched abdominal muscles, whereas the spine's erector muscles and hip flexor muscles should be shortened. During relaxed standing. these lumbopelvic imbalances should cause an increased lumbar lordosis and an enhanced anterior tilt of the pelvis.<sup>1-3</sup>

Malalignment of the spinal structure affects posture and causes a variety of spinal disorders such as back pain, neck pain, scoliosis, and kyphosis. Back pain and disability are associated with lack of exercise and affect about 80% of the adult population at some point in life. In some cases, this painful condition can be severe and chronic, so an exercise program as a non-pharmacological treatment to improve spinal stability and mobility, thereby reducing back pain and disability. <sup>4-6</sup>

Physical treatments aim to enhance function and stop disability from getting worse, Active strategies like exercise are associated with decreased disability. Passive methods (rest, medications) are related to worsening disability and aren't recommended. Public health programs should educate the general public on the prevention of low back pain and neck pain. The goal of this research is to help the community stay healthy and understand the value of back-related health and awareness activities. 14-23

A spinal wellness program is a program to assess and maintain the physical and functional alignment of the spine among people without any pain, which incorporates stretching and strengthening to make sure normal structural stability and functional mobility. Wellness is a concept at the forefront of health promotion. The structure of this program is aimed at promoting health and identifying and correcting spinal problems.

## Need of the study

physical changes like tightness, stiffness, or weakness as well as functional limitations are not recognized until pain and discomfort overcome the ADLs. Spinal wellness should be taken into consideration from early aging with prediction, prevention, and personalization. Thus we would like to develop a comprehensive program for assessing and managing the normality of spinal structure under the spinal wellness program

Materials and methodology - Materials to be used (a)bubble inclinometer, (b) goniometer (c) measure tape

#### EISSN 2583-4304

#### Methodology

study design: an interventional study

study setting: community-dwelling,

study population: healthy individual

study sample: purposive sampling

Study duration:3 months

sample size: 30

venue for data collection: Rajkot city

## **CRITERIA FOR SELECTION**

**Inclusive criteria:** age between 20 to 55 years, SF 36 health questionnaire **Exclusion criteria:** history of hospitalization in the last six months, history of the spinal implant, Presence of history of having severe pain

### Intervention:

Mode: Stretching and Strengthening

**Frequency:**1 session/day, 6 days/week, 2 weeks.

**Intensity: Stretching** 30 sec hold, strengthening 40- 60% of 10RM

Type: Flexibility and mobility

**Time** : Each session 30-35 min.

Sessions : Total 12 sessions, 6 Supervised and 6 Non supervised

**Repetition: For** stretching 3 reps/day, strengthening 10 reps/day

## **Procedure:**

Approval was taken from the research ethics committee and CTRI registration obtained

30 subjects was selected based on the inclusion and exclusion criteria

Subjects was assessed by the physical assessment through ROM<sup>14</sup>, MMT<sup>15</sup>, a curvature of the spine<sup>27</sup>, functional diagnosis v-sit and reach test<sup>10</sup> and spine functional index<sup>9</sup>

After introducing the spine wellness program, the wellness program includes stretching and strengthening to ensure normal structural stability and functional mobility.

The subject-specific program was prescribed. Protocol duration was 30-35 min for 2 weeks 12 session, the program includes both supervision and nonsupervision session

After exercise post-assessment has been taken to compare the difference, statistical analysis was done by SPSS, result, discussion, and conclusion.

# Intervention program

## CERVICAL

| CERVIC<br>AL                 | MOTI<br>ON      | SHORTEN<br>ING                          | LENGTHE<br>NING                   | INTERVEN<br>TION                            | STRENGTHE<br>NING<br>EXERCISE                                                            | STRETC<br>HING<br>EXERCIS<br>E                                  |
|------------------------------|-----------------|-----------------------------------------|-----------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| ROM<br>RESTRIC<br>TED        | extensi<br>on   | Neck<br>flexors                         | Neck<br>extensors                 | Strengthenin<br>g followed by<br>stretching | Prone kneeling<br>head bending<br>forward and<br>backward,<br>isometric neck<br>exercise | Scalene<br>muscle<br>stretch                                    |
| ROM<br>RESTRIC<br>TED        | flexors         | Neck<br>extensors                       | Neck flexors                      | Strengthenin<br>g followed by<br>stretching | High lying<br>position head<br>unsupported<br>flexion,<br>isometric neck<br>exercise     | Trapezius<br>stretch,<br>scalene and<br>SCM<br>stretch          |
| ROM<br>RESTRIC<br>TED        | Side<br>flexion | Contralatera<br>l<br>Scalene and<br>SCM | Ipsilateral<br>Scalene and<br>SCM | Strengthenin<br>g followed by<br>stretching | High side-lying<br>head unsupport<br>ed side flexion,<br>isometric neck<br>exercise      | Scalene<br>muscle<br>stretch,<br>trapezius<br>muscle<br>stretch |
| ROM<br>RESTRIC<br>TED        | rotatio<br>n    | Contralatera<br>l<br>SCM                | Ipsilateral<br>SCM                | Strengthenin<br>g followed by<br>stretching | High side-lying<br>head unsupport<br>ed head<br>rotation,<br>isometric neck<br>exercise  | SCM<br>stretch,<br>scalene<br>stretch                           |
| CERVIC<br>AL                 | MOTI<br>ON      | LENGTHE<br>NING                         | SHORTENI<br>NG                    | INTERVEN<br>TION                            | STRENGTHE<br>NING<br>EXERCISE                                                            | STRETCH<br>ING<br>EXERCIS<br>E                                  |
| DECREA<br>SE<br>STRENG<br>TH | extensi<br>on   | Neck<br>extensors                       | Neck flexors                      | Strengthenin<br>g followed by<br>stretching | Prone kneeling<br>head bending<br>forward and<br>backward,<br>isometric neck<br>exercise | Scalene<br>muscle<br>stretch                                    |
| DECREA<br>SE<br>STRENG<br>TH | flexors         | Neck<br>flexors                         | Neck<br>extensors                 | Strengthenin<br>g followed by<br>stretching | High lying<br>position head<br>unsupported<br>flexion,<br>isometric neck<br>exercise     | Trapezius<br>stretch,<br>scalene and<br>SCM<br>stretch          |

EISSN 2583-4304

| DECREA<br>SE<br>STRENG<br>TH | Side<br>flexion | Ipsilateral<br>Scalene and<br>SCM | Contralateral<br>Scalene and<br>SCM | Strengthenin<br>g followed by<br>stretching | High side-lying<br>head unsupport<br>ed side flexion,<br>isometric neck<br>exercise | Scalene<br>muscle<br>stretch,<br>trapezius<br>muscle<br>stretch |
|------------------------------|-----------------|-----------------------------------|-------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| DECREA<br>SE<br>STRENG<br>TH | rotatio<br>n    | Ipsilateral<br>SCM                | Contralateral<br>SCM                | Strengthenin<br>g followed by<br>stretching | High side-lying<br>head unsupport<br>ed head<br>rotation,<br>isometric neck         | SCM<br>stretch,<br>scalene<br>stretch                           |

## THORACOLUMBAR

|                       | MOTI<br>ON      | SHORTEN<br>ING                    | LENGTHEN<br>ING         | INTERVEN<br>TION                           | STRENGTHE<br>NING<br>EXERCISE                                                 | STRETCH<br>ING<br>EXERCIS<br>E                           |
|-----------------------|-----------------|-----------------------------------|-------------------------|--------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|
| ROM<br>restric<br>ted | Flexion         | extensors                         | flexors                 | Strengthening<br>followed by<br>stretching | Curl ups,<br>bilateral leg<br>raise                                           | Erector<br>spine<br>stretch,<br>child pose<br>stretching |
| ROM<br>restric<br>ted | Extensi<br>on   | flexors                           | extensor                | Strengthening<br>followed by<br>stretching | Superman,<br>Burd dog                                                         | Cobra<br>stretch                                         |
| ROM<br>restric<br>ted | Side<br>bending | Contralatera<br>l side<br>flexors | Unilateral side flexors | Strengthening<br>followed by<br>stretching | Side plank hip<br>lift exercise                                               | Quadratus<br>lumborum<br>stretch                         |
| ROM<br>restric<br>ted | rotation        | Contralatera<br>l rotators        | Unilateral<br>rotators  | Strengthening<br>followed by<br>stretching | Russian twist,<br>Supine<br>bicycling<br>crunches, trunk<br>rotation exercise | Oblique<br>muscle<br>stretch                             |

EISSN 2583-4304

|                              | MOTI<br>ON          | LENGTHE<br>NING         | SHORTEN<br>ING                    | INTERVEN<br>TION                           | STRENGTHE<br>NING<br>EXERCISE                                                    | STRETCH<br>ING<br>EXERCIS<br>E                           |
|------------------------------|---------------------|-------------------------|-----------------------------------|--------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|
| DECRE<br>ASE<br>STREN<br>GTH | Flexion             | flexors                 | extensors                         | Strengthening<br>followed by<br>stretching | Curl ups,<br>bilateral leg<br>raise                                              | Erector<br>spine<br>stretch,<br>child pose<br>stretching |
| DECRE<br>ASE<br>STREN<br>GTH | Extensi<br>on       | extensor                | flexors                           | Strengthening<br>followed by<br>stretching | Superman,<br>Burd dog                                                            | Cobra<br>stretch                                         |
| DECRE<br>ASE<br>STREN<br>GTH | Side<br>bendin<br>g | Unilateral side flexors | Contralatera<br>l side<br>flexors | Strengthening<br>followed by<br>stretching | Side plank hip<br>lift exercise                                                  | Quadratus<br>lumborum<br>stretch                         |
| DECRE<br>ASE<br>STREN<br>GTH | rotation            | Unilateral<br>rotators  | Contralatera<br>l rotators        | Strengthening<br>followed by<br>stretching | Russian twist,<br>Supine<br>bicycling<br>crunches, trunk<br>rotation<br>exercise | Oblique<br>muscle<br>stretch                             |

|                                 | shortening                          | lengthening                                | intervention                               | Strengthening<br>exercise                             | Stretching<br>exercise                                |
|---------------------------------|-------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Excessive<br>lumbar<br>lordosis | lumbar<br>extensors                 | Hip flexors,<br>abdominal<br>muscles       | Strengthening<br>followed by<br>stretching | Curl ups,<br>bilateral leg<br>raise,<br>Russian twist | Erector spine<br>stretch, child<br>pose<br>stretching |
| Decreased<br>lumbar<br>lordosis | Hamstrings,<br>Abdominal<br>muscles | iliopsoas<br>muscle,<br>lumbar<br>extensor | Strengthening<br>followed by<br>stretching | Superman,<br>Burd dog, SLR                            | Hamstring<br>stretch, cobra<br>stretch                |

|               | SHORTENI<br>NG                      | LENGTHENI<br>NG                              | INTERVENTI<br>ON                           | STRENGTHEN<br>ING EXERCISE | STRETCHI<br>NG<br>EXERCISE |
|---------------|-------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------|----------------------------|
| EXCESSI<br>VE | pectoralis<br>major,<br>subclavius, | trapezius,<br>rhomboids,<br>and rotator cuff | Strengthening<br>followed by<br>stretching | Blackburn<br>exercise      | Corner pec<br>stretch      |
| KYPHOSI<br>S  | and pectoralis minor                | muscles                                      |                                            |                            |                            |

|                                 | SHORTENI<br>NG                                             | LENGTHENI<br>NG                              | INTERVENTI<br>ON                            | STRENGTHEN<br>ING<br>EXERCISE                      | STRETCHI<br>NG<br>EXERCISE                                                      |
|---------------------------------|------------------------------------------------------------|----------------------------------------------|---------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|
|                                 | iliopsoas,<br>lumbar<br>extensors                          | Abdominal<br>muscles                         | strengthening,<br>followed by<br>stretching | Curl ups, bilateral<br>leg raise,<br>Russian twist | Erector spine<br>stretch, child<br>pose<br>stretching                           |
| POSTERI<br>OR<br>PELVIC<br>TILT | Hamstring,<br>glutes, and<br>lower<br>abdominal<br>muscles | Quadriceps,<br>lower back<br>muscles         | strengthening,<br>followed by<br>stretching | Superman, squat,<br>high sitting knee<br>extension | Cobra pose,<br>hamstring<br>stretch                                             |
| LATERA<br>L PELVIC<br>TILT      | Opposite side<br>abductors<br>and erector<br>spine         | Same side<br>erectors spine<br>and abductors | Strengthening<br>followed by<br>stretching  | Superman,<br>Burd dog, side<br>SLR                 | Erector spine<br>stretch, child<br>pose<br>stretching,<br>piriformis<br>stretch |

## PELVIC

# HIP

|                       | MOTI<br>ON    | LENGTHE<br>NING                                          | SHORTE<br>NING                                           | INTERVEN<br>TION                           | STRENGTHE<br>NING<br>EXERCISE            | STRETCH<br>ING<br>EXERCIS<br>E                          |
|-----------------------|---------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------------------|
| ROM<br>RESTRIC<br>TED | Flexion       | Iliopsoas,<br>rectus<br>femoris                          | Hamstring,<br>gluteus<br>Maximus                         | Strengthening<br>followed by<br>stretching | Supine SLR,<br>squatting                 | Hamstring<br>stretch,<br>unilateral<br>knee to<br>chest |
| ROM<br>RESTRIC<br>TED | Extensi<br>on | Hamstring,<br>gluteus<br>Maximus                         | Iliopsoas,<br>rectus<br>femoris                          | Strengthening<br>followed by<br>stretching | Squatting,<br>standing<br>hamstring curl | Iliopsoas<br>and<br>quadriceps<br>stretch               |
| ROM<br>RESTRIC<br>TED | abducti<br>on | Piriformis,<br>gluteus<br>medias,<br>gluteus-<br>minimus | Adductors<br>longus,<br>brevis                           | Strengthening<br>followed by<br>stretching | Side SLR,<br>squat to hip<br>abduction   | Butterfly<br>stretch,<br>sumo squat                     |
| ROM<br>RESTRIC<br>TED | adducti<br>on | Adductors<br>longus,<br>brevis                           | Piriformis,<br>gluteus<br>medias,<br>gluteus-<br>minimus | Strengthening<br>followed by<br>stretching | Side lying hip<br>adduction              | Piriformis<br>stretch,<br>sumo squat                    |

EISSN 2583-4304

| ROM<br>RESTRIC<br>TED | Medial<br>rotatio<br>n  | anterior<br>fibres of<br>gluteus<br>medius and<br>minimus,<br>tensor fascia<br>latae | biceps<br>femoris,<br>gluteus<br>maximus,<br>piriformis                              | Strengthening<br>followed by<br>stretching | Squat to hip<br>abduction, side<br>lying abduction        | Unilateral<br>knee to<br>chest,<br>piriformis<br>stretch,<br>hamstring<br>stretch |
|-----------------------|-------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|
| ROM<br>RESTRIC<br>TED | Lateral<br>rotatio<br>n | biceps<br>femoris,<br>gluteus<br>maximus,<br>piriformis                              | anterior<br>fibres of<br>gluteus<br>medius and<br>minimus,<br>tensor<br>fascia latae | Strengthening<br>followed by<br>stretching | Hamstring curl,<br>Squat to hip<br>abduction, side<br>SLR | TFL<br>stretch,<br>sumo squat                                                     |

|                              | MOTI<br>ON         | SHORTEN<br>ING                                           | LENGTHE<br>NING                                                                     | INTERVEN<br>TION                           | STRENGTHE<br>NING<br>EXERCISE                       | STRETCH<br>ING<br>EXERCIS<br>E                                                    |
|------------------------------|--------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------|
| DECRE<br>ASE<br>STREN<br>GTH | Flexion            | Hamstring,<br>gluteus<br>Maximus                         | Iliopsoas,<br>rectus<br>femoris                                                     | Strengthening<br>followed by<br>stretching | Supine SLR,<br>squatting                            | Hamstring<br>stretch,<br>unilateral<br>knee to<br>chest                           |
| DECRE<br>ASE<br>STREN<br>GTH | Extensi<br>on      | Iliopsoas,<br>rectus<br>femoris                          | Hamstring,<br>gluteus<br>Maximus                                                    | Strengthening<br>followed by<br>stretching | Squatting,<br>standing<br>hamstring curl            | Iliopsoas<br>and<br>quadriceps<br>stretch                                         |
| DECRE<br>ASE<br>STREN<br>GTH | abducti<br>on      | Adductors<br>longus,<br>brevis                           | Piriformis,<br>gluteus<br>medias,<br>gluteus-<br>minimus                            | Strengthening<br>followed by<br>stretching | Side SLR,<br>squat to hip<br>abduction              | Butterfly<br>stretch,<br>sumo squat                                               |
| DECRE<br>ASE<br>STREN<br>GTH | adducti<br>on      | Piriformis,<br>gluteus<br>medias,<br>gluteus-<br>minimus | Adductors<br>longus,<br>brevis                                                      | Strengthening<br>followed by<br>stretching | Side-lying hip<br>adduction                         | Piriformis<br>stretch,<br>sumo squat                                              |
| DECRE<br>ASE<br>STREN<br>GTH | Medial<br>rotation | biceps<br>femoris,<br>gluteus<br>maximus,<br>piriformis  | anterior<br>fibers of<br>gluteus<br>medius and<br>minimus,<br>tensor fascia<br>lata | Strengthening<br>followed by<br>stretching | Squat to hip<br>abduction, side-<br>lying abduction | Unilateral<br>knee to<br>chest,<br>piriformis<br>stretch,<br>hamstring<br>stretch |

EISSN 2583-4304

| DECRE | Lateral  | anterior     | biceps     | Strengthening | Hamstring curl, | TFL        |
|-------|----------|--------------|------------|---------------|-----------------|------------|
| ASE   | rotation | fibres of    | femoris,   | followed by   |                 | stretch,   |
| STREN |          | gluteus      | gluteus    | stretching    | Squat to hip    | sumo squat |
| GTH   |          | medius and   | maximus,   |               | abduction, side |            |
|       |          | minimus,     | piriformis |               | SLR             |            |
|       |          | tensor       |            |               |                 |            |
|       |          | fascia latae |            |               |                 |            |

## SCAPULA AND SHOULDER

|             | Present       | lengthening                                                                         | shortening                                                                          | intervention                               | Strengthening<br>exercise               | Stretching<br>exercise                                                   |
|-------------|---------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|
| protraction | Yes, or<br>no | trapezius,<br>rhomboids,<br>and<br>latissimus<br>dorsi<br>muscles                   | serratus<br>anterior,<br>pectoralis<br>major, and<br>pectoralis<br>minor<br>muscles | Strengthening<br>followed by<br>stretching | Black burn<br>ex's                      | Corner pec<br>stretch                                                    |
| retraction  | Yes, or<br>no | serratus<br>anterior,<br>pectoralis<br>major, and<br>pectoralis<br>minor<br>muscles | trapezius,<br>rhomboids,<br>and<br>latissimus<br>dorsi<br>muscles                   | Strengthening<br>followed by<br>stretching | Wall pushups                            | Trapezius<br>stretch,<br>Last stretch                                    |
| Elevation   | Yes, or<br>no | Upper<br>trapezius,<br>serratus<br>anterior,<br>levator<br>scapulae                 | trapezius,<br>rhomboid<br>muscles                                                   | Strengthening<br>followed by<br>stretching | Shoulder<br>shrug,<br>Prone on<br>elbow | Rhomboid<br>stretch,<br>treps<br>stretch                                 |
| depression  | Yes, or<br>no | Trapezius,<br>rhomboid<br>muscles                                                   | Upper<br>trapezius,<br>serratus<br>anterior,<br>levator<br>scapulae                 | Strengthening<br>followed by<br>stretching | Black burn<br>ex's                      | Trapezius<br>stretch, lats<br>stretch,<br>levator<br>scapulae<br>stretch |

### EISSN 2583-4304

## Statistical analysis

Statistical analysis was done using SPSS version 25 was used to generate graphs and tables.

Variable was assessed for normality. For that value of skewness, kurtosis, histogram, and Shapiro-Wilk test was used.

For the normal distribution, the value of skewness and kurtosis should be between -1.96 to +1.96 and the value for the Shapiro-Wilk test should be greater than 0.05.

Data were normally distributed so the paired T-test (parametric) was used.

The level of significance was considered less than 0.05, the confidence interval was kept at 95%

## **Result:**

Table 1: Range of Motion of Cervical Spine Test Analysis

|         |     | Mea  | SD    | Τ    | <b>P-</b> |
|---------|-----|------|-------|------|-----------|
|         |     | n    |       | valu | valu      |
|         |     |      |       | e    | e         |
| Left    | Pre | 14.5 | 1.524 | 4.89 | 0.00      |
| side    |     | 7    |       | 4    | 0         |
| rotatio | Pos | 13.1 | 0.699 |      |           |
| n       | t   | 7    |       |      |           |
| Right   | pre | 14.7 | 1.442 | 6.07 | 0.00      |
| side    |     | 0    |       | 3    | 0         |
| rotatio | Pos | 13.1 | 0.699 |      |           |
| n       | t   | 7    |       |      |           |
| Left    | Pre | 14.8 | 1.408 | 7.54 | 0.00      |
| side    |     | 7    |       | 9    | 0         |
| flexion | Pos | 13.1 | 0.681 |      |           |
|         | t   | 3    |       |      |           |
| Right   | Pre | 14.8 | 1.416 | 7.36 | 0.00      |
| side    |     | 3    |       | 9    | 0         |
| flexion | Pos | 13.1 | 0.681 |      |           |
|         | t   | 3    |       |      |           |

**Interpretation:** Paired T-Test of Range of Motion was done. As per the data analysed, the p-value (probability value) of all ROM is 0.000 which is less than 0.05 (standard value). This shows there is a significant difference between Pre ROM score and Post ROM score. Moreover, there is also improvement seen in the mean Post ROM value

# Table 2: Analysis of The Range of MotionThoracolumbar Spine

|               |          | Mean  | SD        | T<br>valu      | P<br>valu      |
|---------------|----------|-------|-----------|----------------|----------------|
| Flexio<br>n   | Pre      | 8.13  | 1.45<br>6 | e<br>-<br>6.32 | e<br>0.00<br>0 |
|               | Po<br>st | 9.70  | 0.53<br>5 | 6              |                |
| Extens<br>ion | pre      | 8.17  | 1.44<br>0 | -<br>5.04      | 0.00<br>0      |
|               | Po<br>st | 9.50  | 0.86<br>1 | 9              |                |
| Lt<br>lateral | Pre      | 35.17 | 7.15<br>9 | 8.73<br>2      | 0.00<br>0      |
| flexion       | Po<br>st | 27.33 | 4.08<br>8 |                |                |
| Rt<br>lateral | Pre      | 35.53 | 7.28<br>6 | 8.73<br>3      | 0.00<br>0      |
| flexion       | Po<br>st | 27.53 | 4.20<br>8 |                |                |

**Interpretation:** Paired T-Test of Range of Motion of thoracolumbar spine was done. As per the data analyzed, the p-value (probability value) of all ROM is 0.000 which is less than 0.05 (standard value). This shows there is a significant difference between Pre ROM score and Post ROM score. Moreover, there is also improvement seen in the mean Post ROM value.

|          |     | Mea  | SD   | Т     | Р-    |
|----------|-----|------|------|-------|-------|
|          |     | n    |      | valu  | valu  |
|          |     |      |      | e     | e     |
| Flexion  | pre | 7.00 | 1.41 | -     | 0.000 |
|          | _   |      | 4    | 7.047 |       |
|          | pos | 7.77 | 0.93 |       |       |
|          | t   |      | 5    |       |       |
| extensio | Pre | 3.07 | 1.46 | -     | 0.000 |
| n        |     |      | 1    | 7.449 |       |
|          | pos | 3.80 | 1.06 |       |       |
|          | t   |      | 4    |       |       |

# Table 3: Analysis of The Range of MotionLumbar Spine

**Interpretation:** Paired T-Test of Range of Motion of the lumbar spine was done. As per the data analysed, the p-value (probability value) of all ROM is 0.000 which is less than 0.05 (standard value). This shows there is a significant difference between Pre ROM score and Post ROM score. Moreover, there is also improvement seen in the mean Post ROM value.

 Table 4: V Sit and Reach Test

|                       |          | Me<br>an  | S<br>D    | T<br>value | P-<br>value |
|-----------------------|----------|-----------|-----------|------------|-------------|
| V sit<br>and<br>reach | pr<br>e  | 21.4<br>3 | 2.2<br>54 | -<br>5.215 | 0.000       |
| test                  | po<br>st | 22.3<br>7 | 2.0<br>08 |            |             |

**Interpretation:** Paired T-Test of v sit and reach test was done. As per the data analysed, the p-value (probability value) of all v sit and reach tests is 0.000 which is less than 0.05 (standard value). This shows there is a significant difference between Pre v sit and reach test score and Post v sit and reach test score. Moreover, there is also improvement seen in the mean Post v sit and reach test value.

## **Table 5: Spine Functional Index**

|          |     | Me<br>an | SD   | T<br>valu | P-<br>valu |
|----------|-----|----------|------|-----------|------------|
|          |     |          |      | e         | e          |
| Spine    | Pre | 94.1     | 3.63 | 8.36      | 0.00       |
| function |     | 3        | 6    | 3         | 0          |
| al index | Ро  | 99.4     | 1.38 |           |            |
|          | st  | 7        | 3    |           |            |

**Interpretation:** Paired T-Test of spine functional index was done. As per the data analysed, the p-value (probability value) of all ROM is 0.000 which is less than 0.05 (standard value). This shows there is a significant difference between the Pre SPI score and the Post SPI score. Moreover, there is also improvement seen in the mean Post SPI value.

## **Table 6: Manual Muscle Testing of the Spine**

|            |     | Mea  | SD   | t    | Р    |
|------------|-----|------|------|------|------|
|            |     | n    |      | valu | valu |
|            |     |      |      | e    | e    |
| Flexion    | Pre | 4.07 | 0.74 | -    | 0.00 |
|            |     |      | 0    | 7.04 | 0    |
|            | Pos | 4.90 | 0.30 | 7    |      |
|            | t   |      | 5    |      |      |
| Extension  | Pre | 3.87 | 0.73 | -    | 0.00 |
|            |     |      | 0    | 7.44 | 0    |
|            | Pos | 4.77 | 0.50 | 9    |      |
|            | t   |      | 4    |      |      |
| rotation   | Pre | 4.07 | 0.74 | -    | 0.00 |
|            |     |      | 0    | 7.04 | 0    |
|            | Pos | 4.90 | 0.30 | 7    |      |
|            | t   |      | 5    |      |      |
| t/extensio | Pre | 3.87 | 0.73 | -    | 0.00 |
| n          |     |      | 0    | 7.44 | 0    |
|            | Pos | 4.77 | 0.50 | 9    |      |
|            | t   |      | 4    |      |      |

**Interpretation:** Paired T-Test manual muscle test was done. As per the data analysed, the p-value (probability value) of all MMT is 0.000 which is less than 0.05 (standard value). This shows there is a significant difference between the Pre MMT

### EISSN 2583-4304

score and Post MMT score. Moreover, there is also improvement seen in the mean Post MMT value.

|              |      | Mean  | SD    | Т      | Р     |
|--------------|------|-------|-------|--------|-------|
|              |      |       |       | value  | value |
| <b>T1-T2</b> | Pre  | 21.67 | 7.112 | 5.693  | 0.012 |
|              | Post | 20.67 | 5.979 |        |       |
| T11-         | pre  | 21.83 | 6.884 | 2.971  | 0.006 |
| <b>T12</b>   | Post | 20.67 | 5.683 |        |       |
| L1-L2        | Pre  | 11.00 | 5.931 | -2.971 | 0.006 |
|              | Post | 12.17 | 5.032 |        |       |
| L4-L5        | Pre  | 11.17 | 6.254 | -2.971 | 0.006 |
|              | Post | 12.33 | 5.371 |        |       |

## **Table 7: Curvature of The Spine**

**Interpretation:** Paired T-Test of curvature of the spine was done. As per the data analysed, the p-value (probability value) of all curvatures of the spine is 0.000 which is less than 0.05 (standard value). This shows there is a significant difference between Pre curvature of the spine score and Post curvature of the spine score. Moreover, there is also improvement seen in the mean Post curvature of the spine value.

## **Discussion:**

Above study demonstrated that stretching exercises targeting the neck muscles trapezius, scalene, sternocleidomastoid significantly improve neck range of motion and increase neck functions among healthy individuals. When you stretch a muscle, your body responds by increasing blood flow to that area. The blood vessels around the targeted muscle widen to allow more blood to flow through, and your heart starts pumping more blood. Our results were in line with previous studies showing the benefit of stretching exercise for the neck condition.

the current study was to evaluate the effectiveness of stretching on thoracolumbar range of motion (ROM), functional limitation in a healthy individual. Erector spine stretch, child pose stretching, cobra stretch, quadratus lumborum stretch, oblique muscle stretch one can demonstrate improvement on thoracolumbar ROM.

the current study was to evaluate the effectiveness of stretching on lumbar range of motion (ROM), functional limitation in a healthy individual. Erector spine stretch, child pose stretching, cobra stretch, quadratus lumborum stretch, oblique muscle stretch one can demonstrate improvement on lumbar ROM. When you stretch a muscle, your body responds by increasing blood flow to that area. The blood vessels around the targeted muscle widen to allow more blood to flow through, and your heart starts pumping more blood. Our results were in line with previous studies showing the benefit of stretching exercise for the back condition.

v sit and reach test is one of the linear flexibility tests which helps to measure the extensibility of the hamstrings and lower back. In the post mean we can find the improvement in the flexibility in the hamstring and lower back. Because we did the back flexibility and strengthening exercise which helps in the back flexibility and mobility.

we find out to increase spine functional index score after this program, because our program is target the whole spine, and our program includes stretching and strengthening exercises which help in the improvement in spinal stability and mobility.

above study demonstrated that strengthening exercise targeting the back and core muscles and exercise we done curl-ups, bilateral leg raise, superman, burd dog, side plank leg lift, Russian twist significantly improve back range of motion and increased back functions among healthy individuals. In the pre mean we find out lumbar flexion strength is more than lumbar extension, which causes muscle imbalance. And this is one of the reasons for back pain, so in this wellness program, we fix it.

in the measurement of the curvature of the spine we find the subject is affected by poor posture that's why they have kyphosis, increase lumbar lordosis, and some have a flat back syndrome. When the person's lumbar lordosis is increase so they have tightness in the back and weakness the abdominal muscle, the body's posture affects by the kinetic chain, and time our comprehensive program helps in the improvement in the spinal stability and mobility, after the program, we have seen a significant change in the curvature of the spine.

## Conclusion

In context to result and discussion spinal wellness program must be taken into consideration in the early age of life within the lifestyle modification to prevent spine-related disease and disorder such comprehensive spinal wellness program can be prescribed to the community for health and wellness.

However, further study is needed to evaluate the efficacy of the present spinal wellness program with available therapeutic plans for understanding changes between the groups.

## **Reference:**

- 1. Chaurasia BD. BD Chaurasia's Human Anatomy. CBS Publishers & Distributors Pvt Ltd.; 2010.
- Bogduk N. Functional anatomy of the spine. Handb Clin Neurol. 2016;136:675-88. PMID: 27430435. doi: 10.1016/B978-0-444-53486-6.00032-6.
- Sadler SG, Spink MJ, Ho A, De Carvalho DE. Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: a systematic review of prospective cohort studies. BMC Musculoskelet Disord. 2017 Mar 7;18(1):179. PMID: 28264687. doi: 10.1186/s12891-017-1529-6.
- Youdas JW, Garrett TR, Egan KS, Therneau TM. Lumbar lordosis and pelvic inclination in adults with chronic low back pain. Phys Ther. 2000 Mar;80(3):261-75. PMID: 10696121.

- Manchikanti L, Singh V, Falco FJ, Benyamin RM, Hirsch JA. Epidemiology of low back pain in adults. Neuromodulation. 2014 Oct;17 Suppl 2:3-10. PMID: 25395112. doi: 10.11111/ner.12214.
- 6. Andersson GB. Epidemiological features of chronic low-back pain. Lancet. 1999 Aug 14;354(9178):581-5. PMID: 10470716.
- 7. Henchoz Y, Kai-Lik So A. Exercise and nonspecific low back pain: a literature review. Joint Bone Spine. 2008 Oct;75(5):533-9. PMID: 18940772. doi: 10.1016/j.jbspin.2008.01.019.
- Didia BC, Jaja BN, Abere EI, Agi CE. Measurement of spinal curvature: a comparison of two manual methods. Eur J Gen Med. 2011;8(3):189-93. doi: 10.29333/ejgm/82570.
- Gabel CP, Melloh M, Burkett B, Michener LA. The Spine Functional Index: development and clinimetric validation of a new whole-spine functional outcome measure. Spine J. 2019 Feb;19(2):e19-e27. PMID: 30189311. doi: 10.1016/j.spinee.2018.08.006.
- López-Miñarro PA, Alacid F, Rodríguez-García PL. A comparison of the sit-and-reach test and the back-saver sit-and-reach test in university students. J Sports Sci Med. 2009 Mar 1;8(1):116-22. PMID: 24149754.
- 11. Magee DJ. Orthopedic physical assessment-E-Book. Elsevier Health Sciences; 2014 Mar 25.
- 12. Joshua A.et al, "Examination of a Clinical Prediction Rule to Identify Patients With Neck Pain Likely to Benefit From Thoracic Spine Thrust Manipulation and a General Cervical Range of Motion Exercise: Multi-Center Randomized Clinical Trial", *Physical Therapy*, Volume 90, Issue 9, 1 September 2010.
- 13. Kisner C,et al, Therapeutic exercise: foundations and techniques. Fa Davis; 2017 Oct 18.
- 14. Norkin CC, White DJ. Measurement of joint motion: a guide to goniometry. FA Davis; 2016 Nov 18
- 15. Hislop H, Avers D, et al, Daniels and Worthingham's muscle Testing-E-Book: Techniques of manual examination and

#### EISSN 2583-4304

#### EISSN 2583-4304

performance testing. Elsevier Health Sciences; 2013 Sep 27.

- Kim B, Yim J. Core Stability and Hip Exercises Improve Physical Function and Activity in Patients with Non-Specific Low Back Pain: A Randomized Controlled Trial. Tohoku J Exp Med. 2020 Jul;251(3):193-206. doi: 10.1620/tjem.251.193. PMID: 32669487.
- 17. Kim D, et al "Effect of an exercise program for posture correction on musculoskeletal pain." J Phys Ther Sci. 2015 Jun;27(6):1791-4,Epub 2015 Jun 30.
- Cho HY, Kim EH, Kim J. Effects of the CORE Exercise Program on Pain and Active Range of Motion in Patients with Chronic Low Back Pain. J Phys Ther Sci. 2014 Aug;26(8):1237-40. doi: 10.1589/jpts.26.1237. Epub 2014 Aug 30. PMID: 25202188; PMCID: PMC4155227
- Gram B, Andersen C, Zebis MK, Bredahl T, Pedersen MT, Mortensen OS, Jensen RH, Andersen LL, Sjøgaard G. Effect of training supervision on effectiveness of strength training for reducing neck/shoulder pain and headache in office workers: cluster randomized controlled trial. Biomed Res Int. 2014;2014:693013. doi: 10.1155/2014/693013. Epub 2014 Feb
- Dettori JR, et al, The effects of spinal flexion and extension exercises and their associated postures in patients with acute low back pain. Spine (Phila Pa 1976). 1995 Nov 1;20(21):2303-12. doi: 10.1097/00007632-199511000-00008.
- 21. Youdas JW,et al,Lumbar lordosis and pelvic inclination in adults with chronic low back pain. Phys Ther. 2000 Mar;80(3):261-75.
- 22. Sheikhhoseini R, Shahrbanian S, Sayyadi P, O'Sullivan K. Effectiveness of Therapeutic Exercise on Forward Head Posture: A Systematic Review and Meta-analysis. J Manipulative Physiol Ther. 2018 Jul-Aug;41(6):530-539. Epub 2018 Aug 11.
- 23. Gatti R, et al, "Efficacy of trunk balance exercises for individuals with chronic low back pain: a randomized clinical trial." J Orthop Sports Phys Ther. 2011 Aug;41(8):542-52. Jun 7 2011

- 24. Cleland JA, Mintken PE, Carpenter K, Fritz JM, Glynn P, Whitman J, Childs JD. Examination of a clinical prediction rule to identify patients with neck pain likely to benefit from thoracic spine thrust manipulation and a general cervical range of motion exercise: multi-center randomized clinical trial. Phys Ther. 2010 Sep;90(9):1239-50. Jul 15,2010
- 25. Cho HY, et al,Effects of the CORE Exercise Program on Pain and Active Range of Motion in Patients with Chronic Low Back Pain. J Phys Ther Sci. 2014 Aug;26(8):1237-40.
- 26. Lima VP, de Alkmim Moreira Nunes R, da Silva JB, Paz GA, Jesus M, de Castro JBP, Dantas EHM, de Souza Vale RG. Pain perception and low back pain functional disability after a 10-week core and mobility training program: A pilot study. J Back Musculoskelet Rehabil. 2018;31(4):637-643. doi: 10.3233/BMR-169739. PMID: 29526837.
- 27. Cho HY, Kim EH, Kim J. "Effects of the CORE Exercise Program on Pain and Active Range of Motion in Patients with Chronic Low Back Pain. J Phys Ther Sci. 2014 Aug;26(8):1237-40. doi: 10.1589/jpts.26.1237. Epub 2014 Aug 30. PMID: 25202188; PMCID: PMC4155227.
- 28. Rainville J, Hartigan C, Martinez E, Limke J, Jouve C, Finno M. Exercise as a treatment for chronic low back pain. Spine J. 2004 Jan-Feb;4(1):106-15.
- 29. Devaney L,et al, "Description and clinimetric properties. Physiother Theory Pract." 2017 Oct;33(10):797-804.Epub 2017 Aug 4.
- 30. Malik, et al, "Normative Values of Modified-Modified Schober Test in Measuring Lumbar Flexion and Extension: A Cross-Sectional Study." International Journal of Health Science and Research. 6. 1